

Non-adjacent lexical dependencies in an artificial language prime relative clause attachment biases

Felix Hao Wang^a, Mythili Menon^b and Elsi Kaiser^b

^aDepartment of Psychology; ^bDepartment of Linguistics, University of Southern California, Los Angeles, USA wang970@usc.edu

1. Introduction

- Where does the bias in parsing ambiguous relative clauses come from? Is it influenced by the previous statistics people have collected?
- Prior work: Representation of abstract dependencies in language & other domains (e.g. Menon & Kaiser, 2013; Mitchell et al., 1995; Scheepers et al., 2011; van de Cavey & Hartsuiker, 2011).
- What about abstract relations represented through word-level statistical regularities in an artificial language?
- **Research question:** Can adjacent and non-adjacent structures derived from word-level statistics prime the low vs. high attachment preference during the production of relative clauses (RCs)?
- We manipulated the dependencies participants encountered in the priming material
- -Non-adjacent dependency sequences (A_iXC_i) from Gomez, 2002. A **non-adjacent** dependency (NAD) is a three-word sequence such that the first word uniquely predicts the third word, while the second word can vary.
- —This structure models the linear sequence of high attachment in RCs (e.g., Kevin counted the fans of the singer who were excited).
- Hypothesis: if abstract relations extracted from lexical statistics trigger syntactic priming, learning the non-adjacent dependency should prime participants to produce more high-attachment relative clause completions than control participants.
- English RC's have a default low-attachment bias (e.g., Brysbaert & Mitchell, 1996). Can this be weakened by non-adjacent primes?
- Prediction: If non-adjacent lexical-level representations prime dependency formation in RCs, participants should produce more high-attachments after non-adjacent sequences than after adjacent sequences (ACX, and XAC).

3. Results

- Coding: RC completions analyzed as highattachment (HA), low-attachment (LA), or ambiguous (coded as missing in Logistic Regression).
- Successful learning of non-adjacent dependencies: Above-chance performance in test-phase learning questions (p<0.001, Mixed-effects Logistic Regression).
- RC completions influenced by NAD primes:
- More high-attachment completions in nonadjacent prime group than other 3 groups (p<0.001, Mixed effects Logistic Regression) => Fig.1
- People who learned a non-adjacent dependency in the artificial language were more likely to produce RCs that attach to the non-adjacent (higher) noun
- compared to people in control conditions (who learned local dependencies or no dependencies)
- People trained with nonadjacent primes do not follow any item-level (Figure 2) or group-level (Figure 3) tendencies to complete a sentence with High Attachment bias with regard to explicit knowledge of Non-adjacent Dependency questions.

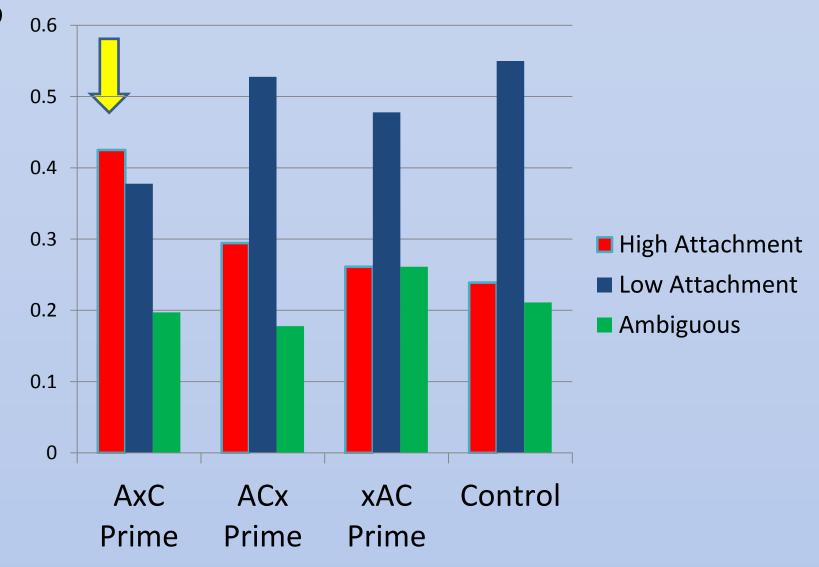


Figure 1. RC Completion Results from Priming and Controls

	НА	LA
YES	105	96
NO	48	40

Figure 2. Item-level Relationship between Correctly saying YES in Priming Test and immediate RC Completion. Fisher's exact test: p=0.798

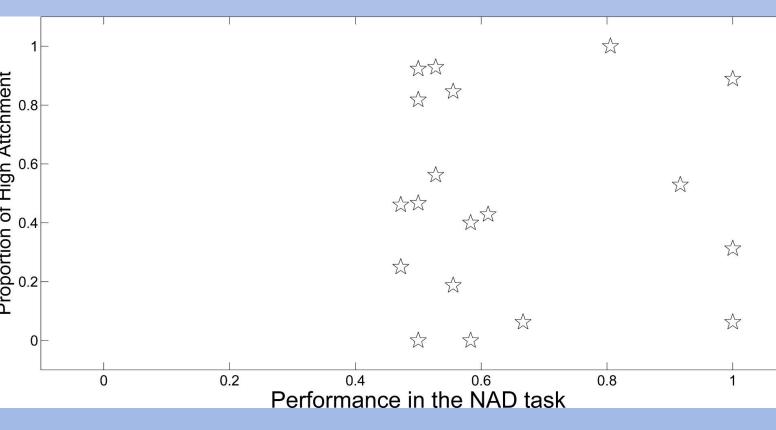


Figure 3. No group-level relationship between Correctness in Priming Test and RC Completion Attachment Biases. Correlation: -0.0538 (p= 0.82)

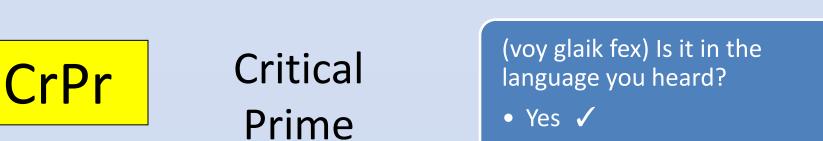
2. Experiment Design

FICom

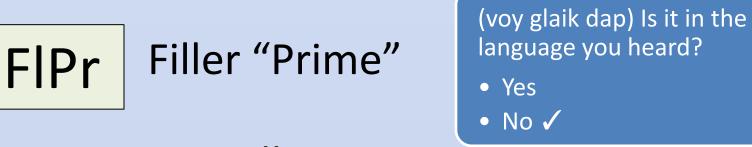
- STEP 1: Training phase (~20 min): Participants (n=50) heard three-'word' strings in an artificial language (adapting stimuli from Gomez'02, e.g. choon glaik jub). During listening, they answered a question on
- Between-subjects design, participants encounter different dependencies:

what word was just played every few minutes.

- Non-adjacent group (n=20) was trained on non-adjacent dependencies (A_iXC_i)
- Two adjacent groups (n=10 each) trained on adjacent dependencies $(A_iC_iX_i, and XA_iC_i)$
- Baseline group (n=10) trained on random three-word orders with no dependencies.
- Step 2: Test phase (~20 min)
- Two trial types:
- a. hear three-'word' sequence [prime], say whether it's in the language
- b. write completions for RC fragments
- On critical trials
 - Artificial language prime occurred immediately before RC fragment.
 - Expected answer to artificial language prime: Yes
 - Then complete relative clause fragment
- Sentence fragments on critical trials were ambiguous RC fragments, people wrote continuations:

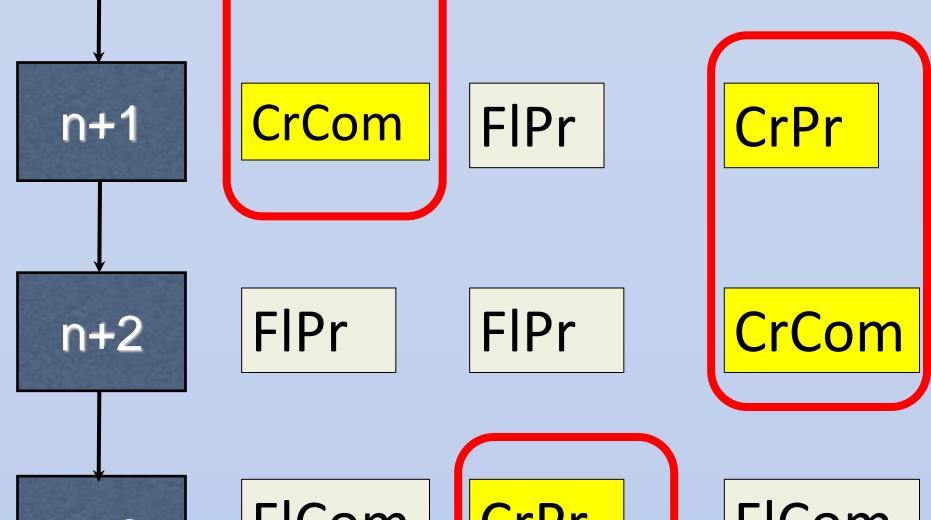

Kevin counted the fans of the singer who

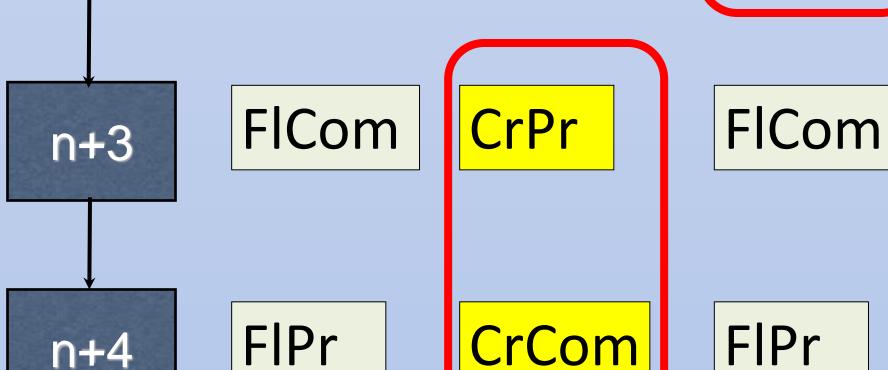
- ...were really excited (HA)
-was performing that night (LA)


glaik, blit, ghire, ghen, sowch, dess

fex, dap, jub

Figure 4. Illustration of the artificial language in Gomez, 2002.




Harry met the doctors of the Critical RC supermodel who _ CrCom • cured cancer (HA) Completion was skinny (LA)

Filler The waitress revered the funny bartender with the fragment thick moustache although completion

Test sequence Illustration **Trial number** Possible trial type FlPr FICom

4. Discussion

n+4

- Abstract relations represented through newly-learned word-level statistical regularities can prime the attachment biases of relative clauses.
- The lack of 'word'-level effects suggest that the representation for RC attachment bias is unlikely to be the same statistical representation at the lexical level that people are trained on.
- This suggests that the underlying representations of attachment biases are best regarded as highly abstract and finely attuned to statistical regularities in the input.
- Future plans: Test this with Spanish. Spanish RCs have a high attachment bias (e.g., Brysbaert & Mitchell, 1996). By priming Spanish speakers with adjacent dependencies, we can see whether their high-attachment bias would be primed to produce low-attachment relative clauses.

References

- Brysbaert, M. & Mitchell, D.C. (1996). Modifier attachment in sentence parsing: Evidence from Dutch. Quarterly Journal of Experimental Psychology, 49A, 664-695.
- Gomez, R. L. (2002). Variability and detection of invariant structure. *Psychological Science*, 13(5), 431–436. Menon, M. & Kaiser, E. (2013). Consequences of 'music to one's ears': Structural Integration Priming from Music to Language. Poster presented at 26th Annual CUNY Conference
- on Human Sentence Processing.
- Mitchell, D.C., Cuetos, F., Corley, M.M.B., & Brysbaert, M. (1995). Exposure-based models of human parsing: Evidence for the use of coarse-grained (non-lexical) statistical records. Journal of Psycholinguistic Research, 24, 469-488. Scheepers, C., Sturt, P., Martin, C.J. (2011). Structural priming across cognitive domains: from simple arithmetic to relative-clause attachment. Psychological Science, 22, 1319-1326.
- Van de Cavey, J. (2012). Are syntactic processes in language and music domain specific? Unpublished thesis. Universitiet Ghent.

Acknowledgement

We thank Dr. Toby Mintz and Dr. Collin Phillips for helpful discussions, and all the participants for their time.